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1. Introduction

In recent years analysis of small macroeconomic models has lead to important insights
concerning the principles of inflation targeting, see e.g. Svensson (1997, 1999a,b) or
Orphanides and Wieland (2000). A convenient assumption in these models is that monetary
policy actions affect the inflation rate with a fixed lag. This paper deviates from this
assumption by letting the central bank influence inflation with a one-period lag as well as a
‘two-period lag, a view that is motivated by empirical as well as theoretical considerations.
Indeed, many features of the model used in this study are probably to a large extent
incorporated in richer models analyzed in the literature. For instance, the transmission
mechanism in open economy models (e.g. Adolfson (2000), or Svensson (2000)) often works
through different channels that affect the inflation rate with various lag lengths.

Unfortunately, due the complexity of these models numerical methods must be employed.

The advantage of the model analyzed in this study is its simplicity which allows for closedform
solutions and hence a full characterization of the model and, in particular, the relationship
between monetary policy actions and dynarnic properties of the transmission mechanisr.
The possibility of an explicit examination of the reduced-form system appears to be a very
usefal way of assessing the implications of the model. It is shown that even if one-period
inflation effects from monetary policy actions are modest the implications for optimal policy
are potendally very large. Fortunately, these implications seem to increase the realism of the
model. For instance, the presence of one-period effects tends to make monetary policy less
aggressive and generate more persistence in the output gap. The model also illustrates that
the nature of empirical (or reduced-form) Phillips curves may reflect monetary policy, and
the observation that the Phillips curve in recent years has become flatter can in this model be
explained by a more countercyclical monetary policy ( a higher coefficient for the output gap

in the instrument rule).

The paper is organized as follows. Sections 2 and $ present and evaluate the model,

respectively, and Section 4 concludes.



2. A simple model

In order to formally analyze the implications of allowing the central bank to influence
inflation with a2 one-period as well as a two-period lag we consider the following model in

which the central bank solves the following optimal dynamic problem:

,{,?i,;,(l—a)zz:oJ‘E, [(ﬁm ~z*) +3—J’f2+,] oy
s.L
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where 7, is the inflation rate, y, is the output gap, i; is the policy instrument (a short term
interest rate), &,, and 7,, are error terms with mean zero, z*is the inflation target and where

& Aay,e, ,f,and B,are parameters with, §<1,4,>0and g, <1

The new element in comparison with the other simple models analyzed in the literature is
that the Phillips curve includes a contemporaneous as well as a lagged relationship between

inflation and the output gap. Notice that the models of Svensson (1997) and Orphanides and
Wieland (2000) correspond the special cases aﬁﬂ 0 and a;= 0 respectively. In theoretical
models as well as empirical studies the Phillips curve is often modeled as a purely
contemporaneous relationship between inflation and the output gap (&, = 0). This may
represent the view that price setters react rapidly to changes in demand. If one believes that
price setters react to changes in demand by some lag then a purely lagged relationship (a)=

0) between inflation and the output gap is appropriate. In general one can imagine a rnix of
these two views and the correct specification is to a large extent an empirical issue. Moreover,
by changing aff or o:; itis possible to analyze changes in how quickly monetary policy actions

affect inflaton.

'An output gap equation of the form: y, ;= B yYe— Er [i, ] 'J +7}14 » it Which the real interest rate is defined in term of

expected inflation (=, Al ) is more appropriate. However, if we take expectations conditional on period t information of this




We will in what follows often rewrite the inflation equation by substituting the output gap

equation (3) into (2), which leads to the following inflation equation

A =7+ ayya"ar(il —~7C,)+£.,+‘ (4)
with
0 1 V] 0 ~
a,=a,f,+a,, a=ap, and &, =a,n,,+E,. 5)

When a,# 0 we will say that there are direct inflation effects (simultaneous with direct output
gap cifects) from monetary policy actions. Moreover, @, represents indirect inflation effects via

the output gap. The presence of the direct effect (ie. ¢, > 0) in the inflation equation (4)
weakens the link between monetary policy and the output gap, in the sense that monetary
policy can affect future inflation using other channels than the one via the output gap. This is
important since the strong link between the output gap and monetary policy actions that
many models exhibit are hard to reconcile with what can be observed, as will be

demonstrated shortly.

Alternative interpretation of the inflation equation (4)

We see from (4) that monetary policy will have a direct effect on inflation the next period—a
feature of the model that can be motivated on other grounds than from equation (2). For
instance, to the extent monetary policy actions affect inflation expectations it is reasonable
this also will affect actual inflation with a relatively short lag. The mechanism that inflation
expectations are crucial for the inflation rate itself is highlighted in forwardlooking models
such as the NewKeynesian Phillips curve.? The NewXKeynesian Phillips curve has been
criticized for implying a negative and unrealistic relationship between the output gap and
inflation one period ahead (see Lindé (2001) for an analysis of this feature) but this

. o i . . .
we obtain 7, = 7:,+(ayﬁy+ o.r_v)y, , which substituted into

expression and the inflation equation (2} and solve for 7 r+i]r

|

the output gap equation above leads to expression (3) with £, = ( , +2y B, +a })/(1+ B, ).and B,=F, /(+ 7, ).
®See Clarida, Gali and Gertler {1999) for a review of this literature,




implication is often actually related to the instrument term appearing in (4).> Moreover, there
might exist direct effects via asset prices, e.g. monetary policy in an open economy has some
effects on the exchange rate and hence imported inflation. Of course if exchange rate effects
are considered then it is desirable to model the exchange rate as an endogenous variable,
However, it can be shown that under some simplifying assurnptions an inflation equation with
an endogenous exchange rate can be reduced to0 an equation similar to (4).* Another well-
known example occurs when the measure of inflation captures interest expenditures in which

case &, might be negative. *

We will in what follows interpret inflation equation (4) specifically, i.e. relate it to the particular
Phillips curve (2) by using (5) as well as more generally, in which case the expressions in (5) do

not necessarily hold due to the presence of other direct effects discussed above.

3. Evaluation of the model

One of the main reasons to analyze the case when a, differs from zero is that, which will be
shown below, the special case «, = 0 is very singular in the sense that a small deviation from
zero can give rise to large effects on the optimal monetary policy response. A straightforward
and drastic way to illustrate this is to consider optimal policy under strict inflation targeting,
i.e. when there are no preferences for output stabilization (4= 0 in the loss function (1)), It is
shown in the appendix that the optimal response in this case can be written as
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*To see this notice that the New-Beynesian Phillips curve: 7,= fz, )t A {m, St denotes expected inflation in period £+7

conditional on period ¢ information) implies 7, = ﬂ_lﬂ', —ﬁﬁlxy, + u,,, (i), where 2, =T~ ) is an expectational
error. Moreover, the cutput gap is asumed to be the central bank’s instrument, ¥f this is interpreted as a simple relationship
between the interest rate (actual Instrument} and the output gap of the form Y, =—di,—m,) then (i) can also take the form of

(4). However, since the error term is «, ) endogenous (depends on expected monetary policy} this inflation equation can not

be seen as a variant of the infladon process (8), for which the error term is exogenous.

"This i possible in an open economy model where deviations from purchasing power parity depend solely on domestic
monetary policy (no foreign shocks or exchange rate risk premium shocks ).

5Sce Nessén and Soderstdm (2001) for an analysis of direct interest rate effects steraming from interest rate expenditures in
CPL




As seen from (6), in the case of strict inflation targeting the monetary policy response does
not converge to (7) but becomes aggressive without bounds whena, approaches zero from
the positive side. Clearly, it can be potentally very misleading to use the approximation ¢, =0
in expressions for the monetary policy response even if one has good reasons to believe that

e, =0 indeed is a good approximation.

‘The example above demonstrates that the instrument rules derived by Svensson (1997) are
not always robust with respect to small changes in the model. One should, however, bear in
mind that the example above is based on strict inflation targeting, which is considered to be a
quite unrealistic special case. In the case of flexible inflation targeting (4> 0) itis shown in the

appendix that the optimal instrument rule takes the form

il_ﬂ"r=g7t(7r1 _77:*) +gy Y (8)
where
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Closer inspection of the instrument rule (8) reveals that when a, approaches zero it actually
converges to the rule derived by Svensson (1997) in the flexible inflation targeting case (1>
0). Thus, under the realistic assumption of flexible inflation targeting the consequences of
adding an instrument term to the inflation equation may be modest. In order to examine this
issue further we numerically evaluate the instrument rule (8) for different parameter values

for &, and A assuming the following values for the other parameters:

a,= 034, §,=0.77, §, =04 and, §=0.95 (13)



This set of parameter values is taken from Nessén (1999) who relied on estimates of equations
(2) and (3) on annual data 1976-1998 for the Euro area provided by Orphanides and
Wieland (2000).

As seen from Table 1 the addition of an insmrument term in the inflation equation has several

notable implications. First, the presence of one period effects (&, > 0) does lead to substantial
reductions in the response coefficients g_and g,, which is natural since interest changes

have larger impact on future inflation. However, the optimal policy rule stll appears to be

aggressive relative to the standard Taylor rule (g,=g,= 0.5), which suggests that other

elements such as parameter uncertainty or interest rate smoothing may have to be added in

order to take further steps towards realism.

Table 1. Policy response coefficients (g, g, ) for different combinations of ¢z, and A

A=0.1 A=0.2 A=03 A=0.5 A=1
a,=0.0 | (691,427)[(6.65,4.18) | (6.45,4.12) | (6.15,4.09) | (5.64,53.89)
a,=01 |(5.82,278)| (547,273)| (5.26,2.70) | (4.95, 2.66) | (4.43 , 2.59)
a,=02 | (449,172)|(427,1.73) | (&12,1.74)| (3.90,1.75) | (354, 1.77)
@,=03 (3.27,1.15) | (3.19, 1.17) | (3.13, 1.18) | (3.0, 1.21) | (2.78, 1.27)
o,=04 | (247,0.86)| (2.44,088) | (241, 0.89) | (2.35,0.92) | (2.20, 0.98)
«,=05 | (1.98,0.69) | (1.960.70) | (1.93,0.72) | (1.89,0.78) | (1.79, 0.81)

Second, the response coefficients are quite insensitive to changes in A, whereas changes in
a, have substantial effects. In other words the nature of the transmission mechanism
(especially the size of @, ) appears to be more important quantitatively than the extent to
which the policy maker has preferences for output stabilization (the size of 1), Third, when
a, =0 (or very small) an increase in A always leads to a less aggressive policy, i.e. reductions in
both g;and g, . However, when &, is sufficiently large we see that an increase in A implies a
larger output gap coefficient and a smaller inflation gap coefficient, which might be more in

line with intuition. We see from (9) that this happens when y= a,-4, £,<0, i.e. when a,>

a, B,/ B,=0.18. As we will se shortly the sign of the parameter yis crucial in several respects.




We have so far evaluated the implications of having direct inflation effects in the inflation

equation (4) for a fixed value of o, without relating them to the inflation equation (2). We
will now exarnine the effects of changing the parameters a)and ) in equation (2), which is

something different. In order to obtain reasonable parameter values equation (2) is estimated
using annual data provided by OECD, see Table 2. Notice first that during the period 1964
1999 the contemporaneous effect from the output gap on inflation is stronger than the

lagged effect, which is statistically significant only at the 10 percent level.

Table 2. Estimation of the generalized Phillips curve: 7,

141 and

0 1 ~
- Er+ ayyt+1+ ayy:+£r+]

implied parameter values ( , s, ) and response coefficients (g, g v}

1964-1999 1964-1980 1981-1999
G? 0.3201 0.1674 0.6252
(2.43) (0.86) (4.98)
&, 0.2500 0.5685 -0.1765
(1.90) (2.86) (—1.43)
RZ 0.425 0.451 0.641
a, 0.50 0.70 0.30
a, 0.13 0.07 0.95
(8n>8y ) A=0.1 (4.26 , 2.99) (3.38,3.85) (3.97,1.22)
(8r:8y ) A=1 (2.92, 2.66) (2.24,3.20) (3.40,1.33)

Inflation is measured as the annual percentage change of CPI and estimates of the output gap are taken from OECD, tvalues
are given within parenthesis and significance at the 5 percent level is indicated by bold face.

However, the dynamic properties of the Phillips curve appear to have changed over time.
Until 1980, only the lagged, and not the contemporaneous, output gap enters significally in
the Phillips curve equation, whereas the opposite holds for the period 1981-1999. Tndeed one
can not rule out the possibility that the lagged output gap since 1981 actually has had a
negative impact on inflation. This is important since the sign of the parameter has several

important implications. First, it is easily verified that if the model is evaluated in terms of the

inflation equation (2), then the crucial parameter y coincides with o:;, which indicates the

Jjudgement that y (&, } actually has been negative in recent years. Moreover, if one allows for

additonal direct effects discussed earlier this Judgement is reinforced further. Second, the

New Keynesian Phillips curve implies a negative relationship between inflation and the lagged

®The Phillips curve was estimated by OLS, which is justified by the fact that the residuals from this regression exhibit a very low




output gap (see footnote 8)—a feature of the New Phillips curve that has been criticized for
being unrealistic. However, the negative estimate of o, for the period 1981-1999 does

provide some (weak) evidence against this criticism.

Moreover, the implied estimate of &, is quite large for the full and first half of the sample but

since 1981 the estimate is close to the value used in Table 5 (0.34). Direct inflatdon effects
measured by the implied estimate of &, are present mainly since 1981. The overall impression
is that the response coefficients are of the same magnitude as in Table 1 and quite insensitive

to changes in A This is true in particular for g,,, which, on the other hand, reacts strongly to

: 1
changesin «,,.

The reduced-form system

Our view of the empirical relationships between macro variables is often based on estimates of
reducedform equations such as nonstructural VAR systems even if there often are
disagreements about how to give structural interpretations to such relationships. It is
therefore interesting to exarnine the implications of a reducedform system derived from a
particular model. If we substitute the instrument rule (8) into equations (2) and (3) we

obtain the following reducedform dynamic VAR type expressions for inflation and the

output gap:
(7)- e )5 "
Y Y L7/
where
B (hlJ: a.g. T* _ 1 Ay(Q=c(A, 2 N7 *J (15)
h, B.eg.n* a,\ (A-c(Z, A N*
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correlation with the residuals obtained from an OLS estimation of the output gap equation (3).
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where the parameters 4,, ¥ anda are given by (11). Several interesting observatons can be
made. In contrast to the “structural” equation (2), the reduced-form equation for inflation
has a constant term that captures the inflation target, 7*. Indeed, when «,is non-zero the
inflation target equals (1-4,, ) /#;, which can be estimated. In practice such estimation can be
problematic if 7* varies over time, a problem that is avoided in the case &, = 0. The coefficient
for lagged inflation, 4, , in the reduced-form inflation equation is strictly less than unity when

@, > 0, which is in accordance with empirical evidence even if it is ofien hard to reject 2 unit

root (the case ¢, =0).

More important is the observation that a positive value of «,weakens the relationship
between the inflation rate and the lagged output gap. This may explain the evidence of a
fatter Phillips curve® as a result of a more counter-cyclical monetary policy (a higher value of
the response coefficient g,)° Indeed, in the case of strict inflation targeting
(withg,=a, /e, ) the Phillips curve is dead, i.e. there exists no reduced-form relationship

between inflaton and the output gap. It is more surprising that the Phillips curve may
become flatter when the policy maker puts more weight on output stabilization (higher 4).

To realize this remember when a, is sufficienty large (such that the variable % see (11),
becomes negative) the response coefficient g, 1s increasing in 4, and we see from (16) that
the Phillips curve tends to be flatter the higher is the response coefficient g, - Calculations

based on parameters values used in Table 1 or Table 2 often produce a very weak or even

negative reduced-form relationship between the inflation rate and the lagged output gap."®

"This expression is correct also in the case when A =a »=0.When A =0and o differs from zero the reducedform system takes
- -1 -1

theform 7, =+ 8., y =4y n*-2y 7,24 vy,+ 1y

8In this paragraph the term Phillips curve refers to the popular empirical specification in which the inflation rate depends on the

lagged output gap, ie. equation (4) with =0,

®Beaudry and Doyle (2000) provide empirical evidence that the Phillips curves for Canada and the U.S, have become flatier in
the 19505, and they also explain this result by changes in central bank behavior,

°Notice, however, that the esimate of & y (which is crudial for the slope of the empirical Phillips curve) often is based on an

equation where o _is restricted to zero , which leads to a downward bias of & ,if &, is positive.
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The coefficient 4,, is always negative implying that inflation is stable even if @, = 0. The
presence of a negative inflation term in the reducedform equation for aggregate demand
does not mean that disinflaion permanendy will raise aggregate demand since it is the
inflation rate relative to the target (#*) that matters." Finally we have that 4,,is strictly less
than unity but otherwise its sign and magnitude is undetermined. The sign of 4,,is related to
the problem of oscillation in the output gap that monetary policy models of this kind often
exhibits, and once again we see from equation (16) that it is the sign of y that matters. Notice
that , = 0 implies that 4,, <0, ie. a positive shock to the output gap in period #will reduce
the output gap in period #+I and vice versa. To understand this let us consider a positive
shock,77,, to the output gap in a neutral macroeconomic state (ie. z,= 7* and y,= 0). This
will give rise to an inflation forecast above the target two periods ahead if monetary policy is
left unchanged. The only way to counteract these inflationary impulses is to tighten monetary
policy such that a negative output gap arises in the following period. This is true even if the
policy-maker cares a lot of output stability (4 large), but in this case the change in the output
gap will be less drastic.”” Moreover, the Jarger the output gap is in period ¢, the larger output
gap of the opposite sign is needed in the subsequent period. This oscillating feature of the
output gap that is implied by the optimal policy response is hard to reconcile with actual

developments since the output gap appears to be a quite persistent process.

The oscillating behavior of the output gap can, however, disappear if we allow for a positive
value of @, such that the parameter y becomes negative. For instance, the parameter values
suggested in (13) together with the assumptions 4= 0.5 and «, = 0.2 give 4,, = 0.31, implying
some degree of persistence in the output gap. Once again the presence of a positive
instrument term (@, > 0) in the inflation equation seems to be a step towards increased

realism.

11 55 possible 1o rewrite (13} in terms of the inflaton gap as z,,, =Az, + u,,, ,where z,= (7,- 7%y, ) and =8 1a)

When =0 strict inflation targeting (4 =0) implies 4,, = -1 whereas under flexible inflation targeting (1>0) 4 ,, approaches

0 below as A tends to infinity (strict output targeting).
Bt can be noticed that the presence of interest rate smoothing reduces the problems in the sense that it contributes to more

pemsistence in the dynamic system. However, interest smoothing does not remove the unrealistic feamre (of the model with a,=
0) thata positive shock to the output gap in period ¢ has a negative impact on the output gap in peried t+1.

11




4. Conclusions

This paper analyzes optimal monetary policy rules when the central bank can influence
inflation directly by a one-period lag as well as two-period lagged effect via the output gap
(which the central bank can influence with a one-period lag). It is shown that direct inflation
effects can be derived from a Phillips curve that allows for a contemporaneous relationship
between inflation and the output gap but other arguments for direct inflation effects are also
provided.

Closed-form expressions for optimal instrument rules are derived and it tums out that the
introduction of direct inflation effects from monetary policy actions of modest magnitude has
quite drastic implications that also are steps towards increased realism. The restricted model,
in which changes in the instrument only affects inflation with a two-period lag, implies an

unreasonably aggressive policy with an unrealistic oscillating behavior of the output gap.

The laver feature, which appears to be a typical implication of many smallscale monetary
policy models, can be avoided by introducing one-period inflation effects from monetary
policy actions. More specifically, it is shown that ondy if the one-period inflation effects from
monetary policy actions are sufficiently large (i.e. if the parameter e, in inflation equation is
larger than some critical value) this will imply: (i) the output gap will exhibit persistence, i.e. a
shock to the output gap in period f will increase the output gap in period #1I; (ii) The

coefficient for the output gap (g, ) in the optimal instrument rule will be an increasing

function of the weight for output stabilization (1) in the central bank’s loss function; and (i)
the reduced-form relationship between inflation and the lagged output gap will weaken the
more the central bank cares about output stabilization. The first and second implications
seem to be in line with intuition. The third implication, which is more surprising albeit a
direct consequence of the second, also suggests that a more counter-cyclical monetary policy

may have contributed to a flatter Phillips curve in recent years.
Finally, the paper demonstrates that the dynamic specification of the transmission mechanism

appears to be a more crucial aspect than the weight the central bank attaches to output

stabilization. This observation underscores the main message of the paper, viz. that the

12




dynamic nature of the transmission mechanism and its implication for optimal monetary

policy is a field of research that deserves more attention.

13




Appendix: Derivation of optimal policy

To solve for optimal policy in the dynamic optimization problem stated in equations (1)—(3)
we make the following substitutions of variables:

2= B, =Ay,—7% A=a, /8, (Al)

rp=1,— ¥ (A2)
In termos of these new variables the optimization problem can be written as

?‘H?’}l (l - J)Z.;:O 6° [ziz+.': + 2/?-02“.,}’”3 + A'Iy!:i-s ] (A?))
st

Ze1T F Ayt ey (Ad)

yt+1=byy! _ﬁr(rt “zr)+771+l (A5)
where

A=A+ A, ay=a,*h(1-5,), by=f,+a,, €.=6,-%n, (A6)

Inspection of the optimizaton problem (A3)—(A5) reveals that it has almost the same
mathematical structure as the problem analyzed by Svensson (1997). The only difference is
that the term 24,z,,_y,,, has been added in the loss functon. There are three cases;

Case 1: 4> 0. Inspired by the methodology in Svensson (1997) we first consider the following
problem

Ve =minfy[22 +2402,3, + 12 [+ 6B,V (z,.)]} (A7)

St zZg=z+a,y+ ey (A8)

where the output gap is considered as control variable. Next we assume that the indirect loss
function, ¥ (z,) , is quadratic,

Viz)= kot L k2] (A9)
To determine the coefficients kjand kwe examine the first order condition (using (A9))

Ay 2+, v+ oa, kzr+l|z= {using (A8)}=
Ay z,+ 4 y,+8ay, k(z,+ a,y,) implying that optimal control, §,, fulfills

~

(o + 3, k)

= Y/ AlD
yr 2.1+&1§k zt ( )
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To identify k2 we use the envelope theorem, i.e.

V,(z)skz,= 2,4+ 4, ¥, + ékzwl[: ={using (A8)} = (1+8k) z, + (Sa, k+ 4,) J,

_ (Gak+4, )
={usmg (AIO)}= |:(1+&)"m z, (A].].)
. . . (o +aJ ]
Identification of the coefficient for z, gives k= | (1 + 5k)— ————— |, which after
A +éak
rearrangements lead us to the following quadratic equation in k
K2 (B ~ (1~ 64, ~ 24080, -2 =0 Al
—5gz O ~(=0)h =24, fe——s = (Al2)

be id

Since we know that the product of the roots to the quadratic equations is —A/( Ban,) <0, there

is one negative root and one positive. Since £must be non-negative the appropriate kis the
positive root of the quadratic equation (A12):

oW, 2 -5 24, )
k:k(x,x0)=% 1-%—;@“/(1—( 5&2)’11 - :"J ““;‘f; (A18)
¥ ¥ ¥ ¥

¥

where we remember that 4, =4+ ;. For fanure reference we also notice that (A8) and (A10)
together imply

Zusgy= oo o) 2, (A14)
where
_ /?'I _ayllo
) kG0 A9

A careful comparison with appendix B.2 in Svensson (1997) reveals that k(A,Lg ), c(A,Ag),2,
andr, play the same role as k(A), ¢(A), (7,-2% and i, respectively in Svensson's analysis, and
hence the optimal policy rule can be written as

n=z=f: 5+ 1, v (A16)
where
_l-eAA) _ 1-c(R4)
a,p, (ay +A’o(l“ﬂy))ﬂr ’
b, +1-c(A,4,) B, +a, +1-c(i,4,)
/Br ﬁi’

Iz

5 (A17)

If we use (Al) and (A2) to express the optimal instrument rule in terms of i, and (z,—z*)
instead of 7, and z, it is straightforward to show that

15




ii—n, =g . (n,~7*) + gy Vi (A1B)
where

gnzfz! gy=§y+ygz7 },;ay—/?‘oﬂy (Al19)

In the case a,=4,= 0 we see that the optimal rule (A18) simplifies to the corresponding
expression derived by Svensson (see equation (2.14) in Svensson (1997)).

Case 2, A=0, o, > 0. In this case the optimal rule is given by

L—7,= g.(m,-n*)+ g, ¥ (A20)
where
g =Ve,, g=ala, {A21)

The intuition behind this rule is that under strict inflation targeting it should be optimal to
control the expected inflation in the next period such that it coincides with the target, ie.
(7::r+EIr = 7%. Whene, > 0 the instrument rule according to (A20) delivers this. Formally it is
also possible to come to this conclusion by following the analysis above, but in this case one

has to select the solution % = 0 1o the quadratic equation (A12), which is not necessarily the
same root as in (Al3).

Case 3, A =0, a,= 0. In this case we are back to the model in Svensson (1997) and the
optimal rule can be obtained by inserting A= &, =0 (implying ¢(4, 4, ) = 0) in (A18).

“Inspection of (A13) reveals that A=0 implies a zero root only if 1-(1-5) 4, / (&zj }-24,/4,20
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